MODULE 3 – ENERGY BALANCE

Objectives

- Understand internal and external cues that help the body regulate food consumption
- Describe how the body expends energy to maintain physiological functions, process food, and power physical activity
- Explain methods to assess overweight and obesity

From Atoms to Organisms

Atoms → Molecule → Cells → Tissues → Organ → Organ systems → Organism
Energy In

- Regulation of intake
 - Hunger
 - Prompts eating; physiological desire, unpleasant physical and psychological sensations that lead people to acquire and ingest food
 - Satiation
 - Signals to stop eating
 - Satiety
 - Lack of hunger, a feeling of fullness or of having had enough to eat
 - Appetite
 - Psychological desire, the desire to eat; a pleasant sensation that is aroused by thoughts of the taste and enjoyment of food
ENERGY ⇒ THE ABILITY TO DO WORK

- Calories are a unit of measure
 - Used to express the amount of energy produced by foods in the form of heat
 - Calories are actually kilocalories or kcals
- 1 kcal or Calorie = 1 kilojoule / 1000 calorie
- 1 calorie is the amount of energy required to heat 1g water by 1°C
- 1 kcal is the amount of energy to raise 1 kg of water by 1 degree Celsius
- 1 kilocalorie = 4.184 (4.2) kilojoules

How do they determine the caloric value of foods?

- Bomb calorimeter
- Burn the food entirely and measure the increase in temperature of the surrounding water
- Heat released by the food is approximately the same as the energy it supplies for the body

Bomb Calorimeter

- Water in which temperature increase from burning food is measured
- a sample of food is burned
- with oxygen (mimics oxidation in the body)
- amount of heat released = temp. rise
- represents amount of energy in that food sample
How is fuel stored?

- **FAT** as Triglyceride in adipose tissues
- **CARBOHYDRATE** as Glycogen in skeletal muscle and liver
- **PROTEIN** is NOT stored
- **ALCOHOL** is NOT stored

Types of energy use (Energy Out/Expenditure)

1. **Basal Metabolism**
 - Maintain basic physiological functions:
 - Breathing, blood circulation etc
 - Energy required to maintain normal body functions while at rest
 - Affected by body size, composition, age, gender

2. **Physical activity**
 - To power physical activity
 - Energy needed for muscular work
 - Affected by body size, fitness level, type of activity

Energy Out: Fuel Uses

- **Dietary thermogenesis (Thermic effect of food (TEF))**
 - Energy used to chemically process foods (process gives off heat)
 - Energy to digest, absorb, metabolize food
Components of Energy Expenditure

- 25-35% physical activity
- 5-10% thermic effect of food
- 60-65% BMR

Factors that Increase RMR Decrease RMR

- Fever* Stress
- Total body weight
- Smoking * Caffeine
- High Lean Body Mass
- Rapid growth
- Hot & cold ambient temp
- Pregnancy, lactation
- Hyperthyroidism
- Rapid growth
- Hot & cold ambient temp
- Pregnancy, lactation
- Hyperthyroidism

Factors that Increase RMR Decrease RMR

- Aging
- Female
- Fasting/Starvation
- Sleep
- Hypothyroidism

Estimating Total Energy Expenditure

- Estimating REE from body weight, gender, and age
- Estimating Total energy expended from REE and physical activity

A) Harris-Benedict Equation

- w: 655.1 + 9.56 (wt:kg) + 1.85(ht:cm) - 4.68 (age:yrs)
- m: 66.47 + 13.75 (wt:kg) + 5.0 (ht:cm) - 6.76 (age:yrs)
• Measure of the energy used when a body is in a state of complete rest.

• B) Estimate your basal metabolic rate
 - Men: body weight (lbs) x 11
 - Women: body weight (lbs) x 10.1
 - Eq.:
 170 lb man X 11 = 1870 kcals/day
 135 lb woman X 10.1 = 1350 kcals/day

• C) Resting Energy Expenditure (REE)
 - Men: body weight (kg) x 24hrs/day x 1.0
 - Women: body weight (kg) x 24hrs/day x 0.9

Basal Metabolic Rate (BMR)

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>EFFECT ON BMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>The BMR is higher in youth as lean body mass declines with age. Physical activity may prevent some of this decline.</td>
</tr>
<tr>
<td>Height</td>
<td>Tall people have a larger surface area, so their BMIs are higher.</td>
</tr>
<tr>
<td>Growth</td>
<td>Children and pregnant women have higher BMIs.</td>
</tr>
<tr>
<td>Body composition</td>
<td>The more lean tissue, the higher the BMR. A typical man has greater lean body mass than a typical woman, making his BMR higher.</td>
</tr>
<tr>
<td>Fever</td>
<td>Fever raises the BMR.</td>
</tr>
<tr>
<td>Stress</td>
<td>Stress hormones raise the BMR.</td>
</tr>
<tr>
<td>Environmental temperature</td>
<td>Adjusting to either heat or cold raises the BMR.</td>
</tr>
<tr>
<td>Fastig/Tharzav</td>
<td>Fastig/Tharzav hormones lower the BMR.</td>
</tr>
<tr>
<td>Malnutrition</td>
<td>Malnutrition lowers the BMR.</td>
</tr>
<tr>
<td>Thyroxine</td>
<td>The thyroid hormone thyroxine is a key BMR regulator, the more thyroxine produced, the higher the BMR.</td>
</tr>
</tbody>
</table>

• Amount spent depends on activity level
 - Inactive 30% of basal metabolism calories
 - Average 50% of basal metabolism calories
 - Active 75% of basal metabolism calories

• Example: if basal metabolism = 1500
 - Inactive person 1500 X .30 = 450 calories
 - Average person 1500 X .50 = 750 calories
 - Active person 1500 X .75 = 1125 calories

Physical Activity
Total daily need for calories =
- Basal metabolic rate 1500
- Activity (inactive) 450
- Dietary thermogenesis +195
Total = 2145 calories

Adding it all up!
Most foods are a mixture!

EER, or estimated energy requirement, is a method to determine how much energy intake your body requires on a daily basis.
The formula to find out includes the following variables: sex, height, weight and the amount of physical activity you do.
As such, by finding out your EER, you can determine how much activity you need to perform on a daily basis to lose weight, gain weight or maintain your current weight.
The formulas in this handout use weight in kilograms and height in meters.

ESTIMATED ENERGY REQUIREMENT (EER)

MALE (For 19 years old and above)

\[
EER = 662 - (9.51 \times \text{age}) + \text{PA} \times (15.91 \times \text{weight}) + (539.6 \times \text{height})
\]

FEMALE (For 19 years old and above)

\[
EER = 354 - (6.91 \times \text{age}) + \text{PA} \times (9.36 \times \text{weight}) + (726 \times \text{height})
\]

A = age (years)
PA = physical activity coefficients
Wt = weight (kg)
Ht = height (meters)

FORMULA
Activity/Gender Coefficients

<table>
<thead>
<tr>
<th>Activity/Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedentary</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Low active, at least 30 minutes of moderate activities</td>
<td>1.11</td>
<td>1.12</td>
</tr>
<tr>
<td>Active, at least 60 minutes of moderate activities</td>
<td>1.25</td>
<td>1.27</td>
</tr>
<tr>
<td>Very active, at least 2 1/2 hours of moderate activities</td>
<td>1.48</td>
<td>1.45</td>
</tr>
</tbody>
</table>

PA COEFFICIENTS

Energy IN = Energy OUT

To Maintain Weight

Measures of Body Composition and Fat Distribution

- Techniques for estimating body fatness include these:
 - Anthropometry
 - Skinfold test
 - Waist circumference
 - Density
 - Underwater weighing
 - Air displacement methods
 - Conductivity
 - Bioelectrical impedance
 - Radiographic techniques
 - Dual energy X-ray absorptiometry (DEXA)
Measuring Body Composition

Skinfold thickness

Underwater weighing

Air displacement

Dual energy X-ray absorptiometry

Bioelectric impedance

Average Body Composition

45% muscle

25% organs

15% fat

15% bone

36% muscle

24% organs

27% fat

13% bone

Body Fat Distribution Patterns
Body fat distribution

- Android
 - greater health risk
 - high blood lipids, glucose intolerances, insulin resistance, and high blood pressure
- Gynoid
 - Waist circumference
 - assess abdominal fatness
 - BMI 25–34.9, waist >40 inches in men and >35 inches in women is sign of increased health risk
Nutrient Groups

- There are six groups of nutrients your body needs
 - **Energy Producing**
 - Carbohydrates
 - Fats
 - Proteins
 - **Non Energy Producing**
 - Vitamins
 - Minerals
 - Water
- These are obtained through the foods you eat
- Each nutrient has specific jobs
- Each is vital to good health

More Nutrients

- A healthy diet contains nutrients from all six groups in the right proportion
- Failure to meet nutrient needs results in a
 - **Deficiency Disease**: illness caused by lack of sufficient amounts of a nutrient
- To meet nutrient needs
 - Variety of fruits, Vegetables, Carbohydrates, Fats, Proteins and Water
 - **Dietary supplements**: purified nutrients that are manufactured or extracted from natural substances
Carbohydrates

- **Carbohydrates**: Body’s main source of ENERGY!
- Most come from plant foods - photosynthesis
- **Two Categories**
 - Simple
 - Complex
- **Three Main Types**
 - Sugars
 - Starches
 - Fiber

CLASSIFICATION OF CARBOHYDRATE

<table>
<thead>
<tr>
<th>CARBOHYDRATE</th>
<th>Monosaccharide</th>
<th>Disaccharide</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple Carbohydrate</td>
<td>Glucose</td>
<td>Glucose + Fructose</td>
</tr>
<tr>
<td></td>
<td>Galactose</td>
<td>Lactose</td>
</tr>
<tr>
<td></td>
<td>Fructose</td>
<td>Maltose</td>
</tr>
<tr>
<td>Complex Carbohydrate</td>
<td>Amylose</td>
<td>Amylopectin</td>
</tr>
</tbody>
</table>

Simple Carbohydrates

- **Sugars**
- **Six Types**: glucose, fructose, galactose, sucrose, lactose, maltose
 - **Single Sugar Units**
 - Glucose: (blood sugar) form of sugar carried in the bloodstream for energy use in the body
 - Fructose: fruit sugar, sweetest of all sugars
 - Galactose: found attached to glucose to form the sugar in milk
 - **Pairs of Sugar Units**
 - Sucrose: table sugar
 - Lactose: milk sugar; found in the milk of mammals
 - Maltose: malt sugar; found in grain products
Complex Carbohydrates

- Starches and Fibers
- Made from many glucose sugar units bonded together
- **Starch**: storage form of energy in plants
 - Most abundant carbohydrate in the diet
- **Fiber**: form of complex carbohydrates from plants that humans cannot digest
 - Does NOT provide the body with energy
 - Provides bulk in the diet (helps you feel full)
 - Promotes normal bowel function (helps you poop)

Carbohydrate Functions

- Main Function of Starches and Sugars
 - Furnish the Body with Energy
- **Fiber**:
 - Stimulates muscles in the digestive tract which prevents some types of cancer;
 - Helps lower cholesterol levels which helps prevent heart disease

Carbohydrate Sources

- Simple Carbohydrates
 - Sugars, syrups, soft drinks, jams, jellies, candies and other sweets
- Complex Carbohydrates
 - Starches
 - Breads, cereals, pasta products, rice, corn, potatoes, dry beans and peas
 - Fiber
 - Whole grain cereal products, fresh fruits and vegetables
Carbohydrate Excess

- Can be a health concern
- Foods high in sugars tend to low in other nutrients
- May deprive your body of other needed nutrients
- Increases the risk of unhealthy weight gain
- Can lead to tooth decay and gum disease

Carbohydrate Deficiency

- Rare!
- May cause the body to use protein as an energy source
- Which can interfere with normal growth and repair of body tissues
- Can create chemical imbalance
- If fiber is lacking constipation can occur

Fats

- **Fats**: important energy sources.
- Belong to a large group of compounds called lipids
- **Lipids**: include fats and oils
 - All lipids contain **Fatty Acids**: chemical chains that contain carbon, hydrogen and oxygen atoms
 - **Saturated Fatty Acid**: fatty acids that have as many hydrogen atoms as they can hold
 - **Unsaturated Fatty Acid**: have fewer hydrogen atoms than they can hold. Two types
 - **Monounsaturated Fatty Acid**: missing one hydrogen atom
 - Found in Olive, Canola, Peanut oil
 - **Polyunsaturated Fatty Acid**: missing two or more hydrogen atoms
 - Found in Safflower, corn, soybean and some fish oils

CARBOHYDRATE & HEALTH

- WEIGHT CONTROL
- HEART DISEASES
- CANCER
- BLOOD GLUCOSE LEVEL
- LACTOSE INTOLERANCE
- GI HEALTH
- DENTAL CARIES
Chemical Structure of Fats

Glycerol + 3 fatty acids

The Length of the Carbon Chain

Short-chain Fatty Acid
(less than 6 carbons)

Medium-chain Fatty Acid
(6-10 carbons)

Long-chain Fatty Acid
(12 or more carbons)

Triglycerides

- Structure
 - Glycerol + 3 fatty acids
- Functions
 - Energy source
 - 9 kcals per gram
 - Form of stored energy in adipose tissue
 - Insulation and protection
 - Carrier of fat-soluble vitamins
 - Sensory properties in food
Triglycerides

- Food sources
 - fats and oils
 - butter, margarine, meat, baked goods, snack foods, salad dressings, dairy products, nuts, seeds
 - Sources of omega-3 fatty acids
 - Soybean, canola, walnut, flaxseed oils
 - Sources of omega-6 fatty acids
 - Vegetable oils

Phospholipids

- Structure
 - Glycerol + 2 fatty acids + phosphate group
- Functions
 - Component of cell membranes
 - Lipid transport as part of lipoproteins
 - Emulsifiers
 - Phosphatidylcholine
- Food sources
 - Egg yolks, liver, soybeans, peanuts

Sterols: Cholesterol

- Functions
 - Component of cell membranes
 - Precursor to other substances
 - Sterol hormones
 - Vitamin D
 - Bile acids
- Synthesis
 - Made mainly in the liver
- Food sources
 - Found only in animal foods
More Fats
- Most Fats high in saturated fatty acids are solid at room temperature.
- Oils high in unsaturated fatty acids are liquid at room temperature.
- Margarine
- Shortening
- Trans Fatty Acids: fatty acids with odd molecular shapes. When oils are partially hydrogenated trans fatty acids are created.
 - Creates health concern. Causes risk for heart disease!! Lowers Good HDL's and raises Bad LDL.

Some common food sources of trans-fatty acids:
- Most hardened margarines and shortenings.
- Salad dressing, mayonnaise.
- Biscuits, rolls, cakes, cookies, crackers.
- Corn snacks and chips.
- Other fried snacks and chips.
- Cookies, doughnuts.
- French fries, fried chicken or fish.
- Fried fast foods, even those fried in commercial "vegetable oils."

Even More Fats
- Cholesterol: fat like substance found in every cell of the body.
- Serves several important functions:
 - Part of skin tissue
 - Aid in transport of fatty acids
 - Body needs it to produce hormones
- 2 types: Dietary Cholesterol and Blood Cholesterol.
 - Dietary cholesterol: occurs when you eat "animal" foods.
 - Blood Cholesterol: circulates through your blood stream.
 - A high blood cholesterol level can lead to heart disease.
Fat Sources

- Fats can be visible or invisible
- Visible Fats
 - Butter, Margarine, Fat on Meat and in Chicken and Turkey Skin
- Invisible Fats
 - Eggs, whipped cream, baked products, fried foods
- Foods High in Fat
 - Butter, margarine, most salad dressings, oils, vegetable shortening, Egg yolks, many dairy products, meats and avocados
Fat Deficiencies
- RARE!
- Loss of weight
- Loss of energy
- Deficiencies in fat soluble vitamins

Fat Excesses
- Can cause weight problems
- Diet high in fat = Diet high in calories
- Higher risk for heart disease
- Increased risk of some types of cancer

Fats and Health

<table>
<thead>
<tr>
<th>Type of Fatty Acid</th>
<th>Found in</th>
<th>Possible Effects on Health</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal fats (especially those from red meat and poultry, butter, and other high-fat dairy products)</td>
<td>Causes high blood cholesterol and triglycerides, contributing to heart disease and cancer risk.</td>
<td></td>
</tr>
<tr>
<td>Trans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French fries and other deep-fat fried foods, cakes, and cookies, chocolate, partially hydrogenated fats</td>
<td>Higher risk of heart disease and breast cancer.</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olive, canola, and palm kernel oils, avocados, nuts, and seeds</td>
<td>Lower blood cholesterol and triglycerides, lower risk of heart disease and breast cancer.</td>
<td></td>
</tr>
</tbody>
</table>
| Polyunsaturated (Even-numbered)
| Canola, corn, and safflower oils, walnuts, flaxseeds, sunflower seeds, and peanuts | Lower blood cholesterol and triglycerides, lower risk of heart disease and breast cancer. | |
| Polyunsaturated (Odd-numbered)
| Cod liver oil, flaxseed, and walnuts | Lower blood cholesterol and triglycerides, lower risk of heart disease and breast cancer. | |

Proteins
- **Proteins:** Chemical compounds that are found in every body cell
 - Needed for growth, maintenance and repair of body tissues
 - Made up of small units called **Amino Acids:** building blocks of proteins
 - 9 amino acids are essential
 - Body cannot make essential amino acids
 - 11 amino acids are non essential
- **Complete protein:** contains all 9 essential amino acids
 - Support growth and normal maintenance of body tissue
- **Incomplete Protein:** missing one or more of the essential amino acids
Nonessential Amino Acids:
--body can synthesize for itself
--food often deliver
--more than 1/2 of a.a. are nonessential

Essential Amino Acids:
--body cannot make
--there are nine
--must be supplied in foods

Conditionally Essential Amino Acids:
--an a.a. normally nonessential but must be supplied in diet in special circumstances

<table>
<thead>
<tr>
<th>Essential</th>
<th>Nonessential</th>
<th>Conditionally Essential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threonine</td>
<td>Tryptophan</td>
<td>Tyrosine</td>
</tr>
<tr>
<td>Isoleucine</td>
<td>Valine</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Leucine</td>
<td>Tyrosine</td>
<td>Phenylalanine</td>
</tr>
<tr>
<td>Lysine</td>
<td>Threonine</td>
<td>Tryptophan</td>
</tr>
<tr>
<td>Methionine</td>
<td>Lysine</td>
<td>Methionine</td>
</tr>
<tr>
<td>Arginine</td>
<td>Methionine</td>
<td>Arginine</td>
</tr>
<tr>
<td>Asparagine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspartic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cysteine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Functions of Body Protein

- Structural and mechanical functions
 - Collagen
 - Keratin
 - Motor proteins

- Enzymes
 - Catalyze reactions

- Hormones
 - Regulate body processes
Protein Sources

- Complete Proteins
 - Animal Foods
 - Meat, poultry, fish, milk, cheese, eggs
 - Soybeans
 - Only plant food source of a complete protein
- Incomplete Proteins
 - Plant Foods

Protein Excesses

- Excess protein is stored as fat — increased risk heart disease, DM, some cancers
- Can cause weight gain
- May cause calcium loss — osteoporosis
- May overwork kidneys & lead to poor kidney function

Protein Deficiency

- Protein Energy Malnutrition (PEM): Condition resulting from a diet that does not contain enough protein
 - In Adults
 - Weight Loss
 - Fatigue
 - In Children
 - Stunted Growth
 - Diarrhea

Protein Deficiency

- Protein-energy malnutrition (PEM) is a term that covers a range of protein deficiency conditions that may include only protein deficiency or protein deficiency plus energy deficiency.
- Kwashiorkor is a pure protein deficiency.
- Marasmus is an energy deficiency.
Types of Vegetarian Diets

<table>
<thead>
<tr>
<th>Diet</th>
<th>What it excludes and includes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semivegetarian</td>
<td>Excludes red meat but may include fish and poultry, as well as dairy products and eggs.</td>
</tr>
<tr>
<td>Pescetarian</td>
<td>Excludes all animal flesh except fish.</td>
</tr>
<tr>
<td>Lacto-ovo vegetarian</td>
<td>Excludes all animal flesh but does include eggs and dairy products such as milk and cheese.</td>
</tr>
<tr>
<td>Lacto vegetarian</td>
<td>Excludes animal flesh and eggs but does include dairy products.</td>
</tr>
<tr>
<td>Vegan</td>
<td>Excludes all food of animal origin.</td>
</tr>
</tbody>
</table>

Nutrient Needs with a Vegan Diet

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Source in Vegan Diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td>Soy-based products, legumes, seeds, nuts, grains, and vegetable protein isolates</td>
</tr>
<tr>
<td>Vitamin B₁₂</td>
<td>Products fortified with vitamin B₁₂, such as soy beverages and some corn, wheat, and rice</td>
</tr>
<tr>
<td>Calcium</td>
<td>Fortified milk, cheeses, yogurt, and vegetable and grain products fortified with calcium</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>Sunshine or products fortified with vitamin D, such as soy beverages, breakfast cereals, and margarine</td>
</tr>
<tr>
<td>Iron</td>
<td>Legumes, rice, dark green leafy vegetables, dried fruit, whole grains, and plant-based protein products (e.g., tofu, tempeh, seitan, seitan-based foods)</td>
</tr>
<tr>
<td>Zinc</td>
<td>Whole grains, wheat germ, legumes, nuts, seeds, and fortified breakfast cereals</td>
</tr>
<tr>
<td>Omega-3 fatty acids</td>
<td>Canola oil, flaxseed and flaxseed oil, walnut oil, and canola, rice, and other vegetable sources, and plant-based milk shakes</td>
</tr>
</tbody>
</table>